Xiroscopiu

De Wikipedia
Saltar a navegación Saltar a la gueta
Animación en 3D d'un giróscopo o xiroscopiu. Si'l soporte de Cardano nel que ta sofitáu nun tien esfregadura apreciable, el giróscopo caltién la orientación de la so exa de rotación.

El giróscopo o xiroscopiu (del griegu "skopeein = ver" y "gyros = xiru") ye un dispositivu mecánicu que sirve pa midir, caltener o camudar la orientación nel espaciu de dalgún aparatu o vehículu.

Ta formáu esencialmente por un cuerpu con simetría de rotación que xira alredor del eje de dicha simetría. Cuando'l giróscopo someter a un momentu de fuerza que tiende a camudar la orientación de la so exa de rotación, tien un comportamientu aparentemente paradóxicu, yá que camuda d'orientación (o esperimenta un momentu angular sía que non, si ta acutáu) xirando respectu d'una tercer exa, perpendicular tantu a aquel respectu del cual emburriar a xirar, como a la so exa de rotación inicial. Si ta montáu sobre un soporte de Cardano qu'embrive cualesquier momentu angular esternu, o si a cencielles xira llibre nel espaciu, el giróscopo caltién la orientación de la so exa de rotación ante fuerces esternes que tiendan a esvialo meyor qu'un oxetu non xiratoriu; esviar muncho menos, y nuna dirección distinta.

Presenta, por tanto, dos propiedad fundamentales: la inercia giroscópica o "rixidez nel espaciu" y la precesión, que ye l'enclín de la exa n'ángulu rectu ante cualquier fuerza que tienda a camudar el planu de rotación. Estes propiedaes manifestar a tolos cuerpos en rotación, incluyida la Tierra. El términu giróscopo aplícase xeneralmente a oxetos esféricos o en forma de discu montaos sobre una exa, de forma que puedan xirar llibremente en cualquier dirección; estos preseos emplegar pa demostrar les propiedaes anteriores, pa indicar movimientos nel espaciu, o pa producilos.

Esti fenómenu físicu, el efeutu giroscópico, puede reparase fácil y cotidianamente en peonces, o monedes llanzaes a rodar, por casu, anque de xacíu, cualquier oxetu xiratoriu funciona en ciertu mou, como giróscopo. El xiru en vuelu impartíu pol xugador a un balón de rugby, o'l d'una bala disparada dende una arma de ánima rayada pa estabilizar la so trayectoria son exemplos d'aplicación del efeutu.

Hestoria y aplicaciones[editar | editar la fonte]

La peonza o trompu ye de xuru l'elementu cultural más vieyu y senciellu qu'ilustra de forma clara l'efeutu giroscópico en funcionamientu. Nes sos diverses formes conocer dende bien antiguu, con restos y referencies pictóriques o epigráficas que daten siquier dende'l primer mileniu ac., en Mesopotamia, anque de xuru sía bien anterior. Hai evidencies del so usu tempranu na Antigua Roma, en Grecia, China, India y munchos otros llugares. Permanez n'esencia un xuguete inalteráu, variando llixeramente la forma y los materiales (magre, madera, plásticu, metal, etc.) y la decoración. De xacíu, conocer empíricamente el so funcionamientu, el fechu de que al xirar caltiense de pies, nun implica que se conocieren les causes del fenómenu, nin poder calcular la magnitú y los factores qu'inflúin nel efeutu, colo que les aplicaciones más potentes nun fueron evidentes hasta muncho más tarde, concluyida la revolución científica y escontra el final de la Revolución Industrial.

Retruque del xiroscopiu inventáu por Foucault en 1852, construyida por Dumoulin-Froment pa la esposición universal de 1867. Conservatorio Nacional d'Artes y Oficios, París.

Al paecer, unu de los primeros intentos conocíos d'aplicación de les propiedaes de la peonza foi'l "espejillo xiratoriu" de John Serson, un capitán inglés. En 1743, inventó una especie de peonza que sirviría p'alcontrar l'horizonte n'alta mar, en condiciones de visibilidá amenorgada, gracies a la so estabilidá dinámica. Sería un precursor bien rudimentariu del horizonte artificial modernu, anque nun paez tener gran impactu.

A quien s'atribúi'l descubrimientu del efeutu giroscópico y la construcción del primer preséu paecíu al giróscopo modernu ye al astrónomu alemán Johann Bohnenberger, quien en 1817 escribió avera de la tema nun escritu tituláu Descripción d'una máquina pa la esplicación de les lleis de rotación de la Tierra en redol a la so exa, y del cambéu d'orientación del mesmu. Llamó al so aparatu, una esfera rotatoria pesada, "la máquina".[1] El matemáticu francés Siméon Denis Poisson yá menta[2] dicha máquina en 1813, nuna memoria so, y el so compatriota y colega Pierre-Simon Laplace, trabayando entós daquella na escuela politécnica de París, encamentó'l so usu na enseñanza, como ayuda didáctica. Asina foi como llegó a saber d'ella Léon Foucault.[3]

El giróscopo como tal foi inventáu, con esi mesmu nome, en 1852 por Foucault, montando una masa rotatorio nun soporte de Cardano pa un esperimentu de demostración de la rotación de la Tierra. La rotación yá fuera demostrada col pendilexu de Foucault. Sicasí nun entendía por qué la velocidá de rotación del pendilexu yera más lenta que la velocidá de rotación de la Tierra por un factor , onde representa la llatitú en que s'alcuentra'l pendilexu. Precisábase otru aparatu pa demostrar la rotación de la Tierra de forma más simple.

Giróscopo direccional modernu, como los emplegaos en aviones, misiles y torpedos, fabricáu pola corporación Sperry Co. Ésti en concretu pertenez a un avión.

Foucault presentó asina un aparatu capaz de caltener una rotación abondo rápida (150 a 200 vueltes per minutu) mientres un tiempu abondu (una decena de minutos) por que pudieren faese midíes. Esta proeza mecánica (pa la dómina) ilustra'l talentu de Foucault y el so collaborador Froment en mecánica.

Foucault tamién se dio cuenta de qu'el so aparatu podía sirvir pa indicar el Norte. N'efeutu, si torguen ciertos movimientos del soporte del giróscopo, ésti allíniase col meridianu. Esto dexó la invención del girocompás, una brúxula giroscópica.


Otra de les sos aplicaciones industriales iniciales foi sirvir como sistema de guía a los primeres torpedos, dexando programar una rudimentaria ruta a siguir antes del llanzamientu y correxir les esviaciones sobre la marcha, hasta ciertu puntu. Polo xeneral emplegar enforma pa la saléu inercial n'aviones, misiles y similares construyíos antes de l'apaición del GPS (entá son imprescindibles, pero yá non como únicu o principal sistema d'empuestu, sinón pa controlar con precisión la orientación). Nesti campu últimamente empiecen a sustituyise por giróscopos de fibra óptica, y en munches aplicaciones industrial y cotidianu, como la tableta o'l teléfonu intelixente, utilícense giróscopos del tipu "MEMS" (Micro Electro Mechanical System), "SMEM" n'español, con menor tamañu y pesu, y mayor precisión y cencellez, que namái comparten la función col giróscopo mecánicu, non l'efeutu giroscópico como principiu operativu.

Tamién s'utilicen giróscopos mecánicos pa menguar el valumbu de navíos y p'estabilizar plataformes de tiru.

Cuando s'emburria'l llau derechu escontra baxo, este, en llugar de baxar, mover escontra l'observador.
Cuando se da un golpecito na estremidá de la barra horizontal comunicar a les mases una velocidá horizontal perpendicular a les sos velocidaes tanxenciales. Vista dende enriba del dibuxu d'esquierda. Les velocidaes de la masa de riba tán dibuxaes en trazos continuos y les de la masa de baxo en puntiáu.

Descripción del efeutu giroscópico[editar | editar la fonte]

Supongamos un giróscopo formáu por un discu montáu sobre una exa horizontal, alredor del cual el discu xira llibremente a gran velocidá, como se repara na figura de la derecha. Un observador caltién la exa del fondu cola manzorga y l'exa de lantre cola mano derecha. Si l'observador trata de faer xirar la exa escontra la derecha (baxando la mano derecha y xubiendo la manzorga) va sentir un comportamientu bien interesáu, una y bones el giróscopo emburria la so mano derecha y tira de la so manzorga. L'observador acaba de sentir el efeutu giroscópico. Ye una sensación bien sorprendente porque da la impresión de qu'el giróscopo nun se porta como un oxetu normal».

Descripción detallada del efeutu[editar | editar la fonte]

Sía l'oxetu dibuxáu na imaxe de la derecha, formáu por dos mases (en negru) de pequenes dimensiones suxetes por una barra (en verde) en forma de T de masa despreciable y total rixidez. El centru de la T ta afitáu a un soporte per mediu d'una rótula que dexa que la barra en T xire llibremente alredor de cualquier exa.

Les mases xiren rápido alredor del puntu fixu con una velocidá tanxencial . Nel momentu que les mases pasen pola posición del dibuxu da un impulsu escontra baxo na estremidá llibre de la T. La barra verde tresmite esi impulsu a los dos mases y da-y a caúna, una pequena velocidá horizontal perpendicular a la so velocidá actual. Escontra la derecha na masa de riba y escontra la esquierda na masa de baxo; esto ye, la barra xira un pocu respectu de la exa llonxitudinal.

Nel dibuxu de la derecha apaecen los dos mases vistes dende enriba. Les velocidaes comunicaes pol impulsu sumir a les velocidaes corrientes. La consecuencia inmediata ye que la velocidá de la masa de riba esviar llixeramente escontra la derecha y la velocidá de la masa de baxo esviar escontra la esquierda. Sosprendentemente, la resultancia final ye que'l planu de rotación de los dos mases xiró (amás de respectu de la exa llonxitudinal, tamién respectu de la exa vertical) O, dicho otra manera, la exa de rotación de los dos mases xiró respectu de dos exes, y non yá respectu del qu'intentábamos faelo xirar.

Nun giróscopo nun se trata de dos mases puntuales sinón de mases distribuyíes sobremanera'l discu o'l cilindru, pero eso nun camuda'l fondu de la esplicación. Y cuando, en llugar de da-y un impulsu a un giróscopo, aplícase-y un momentu, puede considerase esti momentu como una socesión de curtios impulsos. Cada unu d'ellos añede a les mases una ínfima velocidá perpendicular a les sos velocidaes. Eso fai que la velocidá camude de dirección ensin camudar de módulu.

Giróscopo en funcionamientu. La exa colorada ye la exa de rotación del discu. El verde ye la exa respecto del que se fai xirar el planu de rotación del discu. L'azul ye la exa respecto del cual manifiéstase, nesti casu, l'efeutu giroscópico, dándo-y un segundu sentíu de xiru al planu de rotación del discu. (Nótese que les funciones de la exa verde y l'azul podríen intercambiase, y l'efeutu visible sería'l mesmu.

Esplicación intuitiva de la causa del efeutu giroscópico[editar | editar la fonte]

Supongamos frente a nós un giróscopo, un discu trevesáu per una exa. Imaginémoslo de forma tal que la exa atopar n'horizontal, frente a los nuesos güeyos, y nueses dos manos garren los estremos; por tanto, vamos ver el "cantar" del discu en vertical. Imaxinemos agora que'l discu empieza a xirar nel sentíu nel qu'el so parte cimeru se "alloña" de nós y l'inferior se "avera" a nós. Imaxinemos por casu un puntu coloráu pintáu sobre'l cantar, de cuenta que lo vemos xirar col discu, va siempres de baxo a enriba al pasar frente a nós. Agora xubimos un pocu nuesa manzorga y baxamos un pocu la derecha, inclinando la exa de xiru del discu. Si agora miramos el nuesu puntu coloráu, vamos ver que yá nun viaxa de baxo a enriba, sinón en diagonal, esto ye, de baxo a enriba y d'esquierda a derecha. Agora estremamos mentalmente'l discu, ensin detenelo, en dos mitad: la más alloñada de nós (la metá del discu que nun vemos, dende la nuesa perspeutiva) y la más cercana (la que vemos), y damos cuenta de que, na parte más alloñada del discu, el puntu coloráu viaxa siempres escontra baxo y a la izquierda. Na más cercana, viaxa escontra riba y a la derecha. De xacíu, non yá el puntu coloráu, tola masa del discu sigue estes direcciones en cada metá. La componente vertical del movimientu (enriba o embaxo) podemos ignorala, porque yá esistía antes d'inclinar la exa, anque yera mayor. Lo realmente nuevo son les componentes horizontales del movimientu. La masa ta moviéndose de derecha a esquierda na parte más alloñada del discu, y d'esquierda a derecha na más cercana, na que vemos. Estos movimientos de masa con una componente horizontal, qu'apaecen al inclinar la exa, anicien reacciones (3.ª Llei de Newton) opuestes a ellos, y por tantu'l discu va esperimentar una fuerza escontra la derecha na so parte alloñada, y escontra la esquierda na so parte cercana. Ye dicir que les nueses manos, que sostienen la exa, al inclinalo, xubiendo la manzorga y baxando la derecha (amás de notar la resistencia habitual de sentíu opuestu al nuesu esfuerzu y que notaríamos anque'l discu nun xirara, 3.ª Llei de N), van notar una fuerza "estraña" qu'emburria escontra tras la nuesa mano derecha, y palantre la esquierda. Esta fuerza, sorprendente y esconcertante pa quien nun conoz el fenómenu, ye l'efeutu giroscópico. Ye por esi nuevu momentu angular perpendicular al planu de rotación inicial pol que, si'l giróscopo nun ta acutáu nes sos exes de movimientu, al pretender xirar dichu planu esperimenta otra rotación (como reacción newtoniana a dichu momentu) tamién nuna tercer exa perpendicular al xiru y a la so exa de rotación inicial.

En resume, la causa del efeutu giroscópico ye'l cambéu na dirección de desplazamientu de la masa del discu, con una componente paralela a la exa de rotación inicial, de sentíu contrariu en cada estremu del discu. Esta nueva componente del movimientu implica una reacción de sentíu contrariu (3.ª Llei de Newton), que se manifiesta nel momentu angular qu'esperimenta'l giróscopo.

Giros.JPG

Esto vese entá más claru si sustituímos el discu del xiroscopiu, una vegada inclináu, por otros dos que los sos exes de xiru son ortogonales, como nes viñetes de la imaxe de baxo. El discu vertical representa'l momentu angular que se caltién nel planu de xiru inicial, y l'horizontal el que pasó a esti planu. Si'l xiroscopiu permanez vertical, nun hai rueda horizontal, namái equival a un discu vertical del so mesmu tamañu. Cuando empieza a inclinase, apaez el discu horizontal, de primeres bien pequenu, en comparanza col vertical. A midida que el xiroscopiu va inclinándose, y escai l'ángulu, el tamañu de la rueda vertical menguaría, y aumentaría el de la horizontal. Rescampla que si los dos ruedes tán acoplaes nun únicu mecanismu, ésti va esperimentar un momentu angular nel planu horizontal, contrariu al sentíu de xiru del discu horizontal a midida que ésti creza en tamañu (y por tantu en momentu angular) pa caltener el caltenimientu del momentu angular del mecanismu total.down

Movimientos del giróscopo y planteamientu matemáticu[editar | editar la fonte]

Precesión (azul), nutación (colloráu) y rotación (verde).

Acordies con la mecánica del sólidu ríxidu, amás de la rotación alredor de la so exa de simetría, un giróscopo presenta polo xeneral dos movimientos principales: la precesión y la nutación. Esti fechu deduzse directamente de les ecuaciones de Euler.


Pa entender cuantitativamente el movimientu d'un giróscopo, podemos utilizar la segunda llei de Newton pa la rotación.

Xuntu coles relaciones

y

Onde Ι ye'l momentu d'inercia y ω ye la velocidá angular de la rueda al respective de la so exa de spin.


Nun xiroscopiu tenemos de tener en cuenta que'l cambéu nel momentu angular de la rueda tien de dase na dirección del momentu de la fuerza qu'actúa sobre la rueda.

La velocidá angular de precesión puede calculase de la siguiente manera:

Nun pequenu intervalu de tiempu dt, el cambéu esperimentáu enagora angular tien módulu dL:


Onde MgD ye'l módulu del momentu respecto al puntu onde pivota. L'ángulu θ barríu pela exa nel so movimientu ye



Y por lo tanto la velocidá angular de precesión ye


Precesión[editar | editar la fonte]

Artículu principal: Precesión
Precesión nun xiroscopiu.

Cuando s'aplica un momentu a un cuerpu en rotación que'l so momentu angular ye , y siempres que nun sía colineal col momentu angular orixinal , la dirección de la exa de rotación del cuerpu animar d'un movimientu de rotación de velocidad angular . Esta velocidá angular, llamada velocidá de precesión, ta rellacionada col momentu y el momentu angular pola fórmula:

La velocidá de precesión, como toles velocidaes angulares, midir en radianes/segundu. En módulu, la velocidá de precesión ye igual a . Esto ye, para una mesma cantidá pel momento, la magnitú de la velocidá de precesión ye tantu más pequena cuanto más grande sía'l momentu angular. Y como el momentu angular ye'l productu de la velocidá de rotación del giróscopo multiplicada pol so momentu d'inercia, puede amenorgase la velocidá de precesión aumentando'l momentu d'inercia, la velocidá de rotación o dambes.

Equí atopamos l'interés d'utilizar un giróscopo pa caltener una referencia de dirección. Partiendo del reposu, tolos cuerpos caltienen la orientación que tienen salvu cuando se-yos apliquen momentos esternos. Nesi casu, cuando un cuerpu non xira, l'efeutu del momentu ye'l de crear una aceleración angular, que crea una velocidad angular creciente. Cuando'l momentu atáyase, l'oxetu sigue xirando cola velocidá angular qu'adquirió. Sicasí, cuando'l mesmu momentu aplicar a un oxetu en rotación, este empieza a xirar cola velocidá de precesión calculada antes. Y cuando el momentu atáyase, la precesión del oxetu tamién s'ataya. La resultancia ye que, nun giróscopo, los momentos parásitos tienen muncho menos efeutu al llargu plazu que nun oxetu ensin rotación. Amás, puede menguase l'efeutu d'esos momentos, aumentando'l momentu d'inercia y la velocidá de rotación del giróscopo.

Nutación[editar | editar la fonte]

Artículu principal: Nutación

Cuando'l momentu que causa la precesión camuda de valor, la velocidá de precesión tamién camuda de valor. Pero esi cambéu nun asocede instantáneamente. Hai un periodu de transición mientres el cual el giróscopo «dexa un mizcu al momentu na mesma dirección qu'un oxetu que nun xira. Dempués el giróscopo repon lo que venciera, bazcuyando na dirección del momentu alredor de la trayectoria de precesión final. Esti movimientu d'oscilación transitoriu llámase nutación.

Si'l cambéu de valor de los momentos enllargar, la nutación puede durar enforma. Ye'l casu de la Tierra. L'atracción de la Lluna y del Sol sobre l'abombadura de la Tierra nel ecuador ye distintu ente'l llau próximu y el llau alloñáu respectu al astru. Esa diferencia d'atracción crea un momentu, que causa la precesión de los equinoccios. Pero, como nin el Sol nin la Lluna tán nel planu del ecuador terrestre, el momentu producíu por estos astros camuda dacuando y el movimientu de nutación de la Tierra non se amortigua.

Bicicleta[editar | editar la fonte]

Supúnxose mientres enforma tiempu que l'efeutu giroscópico yera l'únicu o'l principal fenómenu físicu rellacionáu col equilibriu de les bicicletes y motocicletes, anque foi delles vegaes refutado.[4] La forma más senciella de comprobar que l'efeutu giroscópico nun apurre la mayor parte de la so estabilidá a una bicicleta ye compensalo con giróscopos nes ruedes. L'esperimentu foi realizáu[5] y comprobóse que la bicicleta ye perfectamente estable ensin efeutu giroscópico netu. Sicasí, ye imposible conducir una bicicleta col manillar bloquiáu, lo que demuestra que son les fuerces centrífugues (nel sistema de referencia de la bicicleta) qu'apaecen al mover el manillar les que-y confieren estabilidá. Una bicicleta o una motocicleta llanzaes en movimientu ensin conductor, siguen avanzando ensin cayese hasta qu'atopen una torga o que pierdan el so impulsu. La trayectoria va ser una espiral, un círculu o, raramente, una recta.

Cuando la bicicleta inclinar escontra la esquierda, el momentu creáu pol pesu sobre la rueda delantera mueve'l momentu angular d'esta escontra tras y facer virar escontra la esquierda. Esta situación sigue hasta que'l momentu creáu pola fuerza centrífuga debida al xiru compense'l momentu creáu pol pesu.

Nel dibuxu ta representada una bicicleta en movimientu col manillar derechu ya inclinada un pocu escontra la esquierda. El pesu de la bicicleta crea un momentu que tiende a inclinar entá más la bicicleta y a faela cayer. Pero como la bicicleta avanza, la rueda de lantre tien un momentu angular empobináu escontra la esquierda. La rueda de tras tamién tien un momentu angular, pero la manera na cual ta suxeta nun-y dexa tener efeutu nel equilibriu de la bicicleta. Esti momentu crea una variación , dirixida escontra tras, del momentu angular de la rueda de lantre. Esto quier dicir que la rueda de lantre xira escontra la esquierda, como si xirárase'l manillar escontra la esquierda. La bicicleta empieza a voltiar escontra la esquierda. Mientres el momentu faiga inclinase más la bicicleta, el momentu angular de la rueda de lantre va inclinase escontra tras, el manillar escontra la esquierda y el radiu de la trayectoria de la bicicleta va menguar.

Vistu dende'l sistema aceleráu y non inercial de la bicicleta, el radiu de rotación mengua, lo cual aumenta la fuerza centrífugo. Esta fuerza centrífugo crea un momentu que tiende a endrechar la bicicleta y a compensar el momentu del pesu que tiende a faela cayer. Cuando los dos momentos terminen per compensar se, la bicicleta dexa d'inclinase y el manillar de xirar escontra la esquierda. La bicicleta sigue na so trayectoria circular con radio constante. Si'l frotamiento col aire o otres coses mengüen la velocidá de la bicicleta, la fuerza centrífugo va menguar, la bicicleta recomenzará a cayese, lo cual va faer xirar el manillar escontra la esquierda. El radiu de xiru va menguar, lo cual va aumentar la fuerza centrífugo hasta qu'ésta compense de nuevu'l momentu del pesu. Cuando'l manillar llega a 90° o se bloquia, la bicicleta caise.

Si llánzase una bicicleta col manillar inmovilizáu (amarráu), la bicicleta va cayese como si tuviera parada.

Ver tamién[editar | editar la fonte]

Referencies[editar | editar la fonte]

  1. Johann G. F. Bohnenberger (1817) "Beschreibung einer Maschine zur Erläuterung der Gesetze der Umdrehung der Erde um ihre Axe, und der Veränderung der Lage der letzteren" (Descripción d'una máquina pa la esplicación de les lleis de rotación de la Tierra en redol a la so exa, y del cambéu d'orientación del mesmu), Tübinger Blätter für Naturwissenschaften und Arzneikunde, vol. 3, páxines 72–83.
  2. El matemáticu francés Poisson menta la máquina de Bohnenberger yá en 1813: Simeon-Denis Poisson (1813) "Mémoire sur un cas particulier du mouvement de rotation deas corps pesans" [Memoria sobre un casu particular del movimientu de rotación de los cuerpos pesaos.], Journal de l'École Polytechnique, vol. 9, páxines 247–262. Disponible n'Internet en: http://www.ion.org/museum/files/File_2.pdf .
  3. (N'inglés) Wagner JF, "La Máquina de Bohnenberger", Institutu del Saléu. (Wagner JF, "The Machine of Bohnenberger", The Institute of Navigation)
  4. «Bicycle Science». Archiváu dende l'orixinal, el 10 de setiembre de 2007. Consultáu'l 4 d'agostu de 2006.
  5. Jones, David Y. H.. «The stability of the bicycle». Physics Today 23. http://socrates.berkeley.edu/%7Efajans/Teaching/MoreBikeFiles/JonesBikeBW.pdf. Consultáu 'l 4 d'agostu de 2006. 

Bibliografía[editar | editar la fonte]

  • Feynman, Leighton and Sands. Lectures on physics. Addison-Wesley. (n'inglés)

Enllaces esternos[editar | editar la fonte]




Giróscopo