Saltar al conteníu

Programación non llinial

Esti artículu foi traducíu automáticamente y precisa revisase manualmente
De Wikipedia

En matemátiques, programación non llinial (PNL) ye'l procesu de resolución d'un sistema d'igualdaes y desigualdaes suxetes a un conxuntu de restricciones sobre un conxuntu de variables reales desconocíes, con una función oxetivu a maximizar (o embrivir), cuando dalguna de les restricciones o la función oxetivu nun son lliniales.

Formulación matemática del problema

[editar | editar la fonte]

El problema de programación non llinial puede enunciase d'una forma bien simple:

maximizar una función oxetivu o : embrivir una función oxetivu (de costu)

onde :

Métodos de resolución del problema

[editar | editar la fonte]

Si la función oxetivu f ye llinial y l'espaciu acutáu ye un politopo, el problema ye de programación llinial y puede resolvese utilizando dalgunu de los bien conocíos algoritmos de programación llinial.

Si la función oxetivu ye cóncavu (problema de maximización), o convexa (problema de minimización) y el conxuntu de restricciones ye convexu, entós puede utilizase el métodu xeneral d'optimización convexa.

Esiste una variedá de métodos pa resolver problemes non convexos. Unu d'ellos consiste n'utilizar formulaciones especiales de problemes de programación llinial. Otru métodu implica l'usu de téuniques de Ramificación y fradadura, cuando'l problema estremar en subdivisiones a resolver por aciu aproximamientos que formen una llende inferior del costu total en cada subdivisión. Por aciu subdivisiones socesives, va llograse una solución que'l so costu ye igual o inferior que'l meyor llende inferior llográu por dalguna de les soluciones averaes. Esta solución ye óptima, anque posiblemente nun sía única. L'algoritmu puede ser paráu antes, cola garantía de que la meyor solución va ser meyor que la solución atopada nun porcentaxe acutáu. Ello utilízase en concretu en problemes importantes y especialmente difíciles y cuando'l problema cunta con costos inciertos o valores onde la incertidume puede ser envalorada nun grau de fiabilidá apropiáu.

Les condiciones de Karush-Kuhn-Tucker apurren les condiciones necesaries por que una solución sía óptima.

Ejemplo bidimensional

[editar | editar la fonte]
La interseición de la llinia col espaciu de restricciones representa la solución.

Un problema senciellu puede definise poles restricciones:

x1 ≥ 0
x2 ≥ 0
x12 + x22 ≥ 1
x12 + x22 ≤ 2

con una función oxetivu a ser maximizada

f(x) = x1 + x2

onde x = (x1, x2)

Exemplu tridimensional

[editar | editar la fonte]
La interseición de la superficie cimera col espaciu de restricciones nel centru representa la solución.

Otru problema simple definir pola restricciones:x12x22 + x32 ≤ 2

x12 + x22 + x32 ≤ 10

con una función oxetivu a ser maximizada

f(x) = x1x2 + x2x3

onde x = (x1, x2, x3)

Ver tamién

[editar | editar la fonte]

Referencies

[editar | editar la fonte]

Bibliografía

[editar | editar la fonte]
  • Avriel, Mordecai (2003). Nonlinear Programming: Analysis and Methods. Dover Publishing. ISBN 0-486-43227-0.
  • Bazaraa, Mokhtar S. and Shetty, C. M. (1979). Nonlinear programming. Theory and algorithms. John Wiley & Sons. ISBN 0-471-78610-1.
  • Nocedal, Jorge and Wright, Stephen J. (1999). Numerical Optimization. Springer. ISBN 0-387-98793-2.
  • Bertsekas, Dimitri P. (1999). Nonlinear Programming: 2nd Edition. Athena Scientific. ISBN 1-886529-00-0.

Enllaces esternos

[editar | editar la fonte]