Núcleu atómicu

De Wikipedia
Saltar a navegación Saltar a la gueta
Representación averada del átomu de Heliu. nel núcleu los protones tán representaos en colloráu y los neutrones n'azul. Na realidá'l núcleu tamién ye simétricamente esféricu.

El núcleu atómicu ye la parte central d'un átomu, tien carga positiva, y concentra más del 99,999 % de la masa total del átomu.

Ta formáu por protones y neutrones (denominaos nucleones) que se caltienen xuníos per mediu de la interacción nuclear fuerte, que dexa que'l núcleu sía estable, a pesar de que los protones se repelen ente sigo (como los polos iguales de dos imanes). La cantidá de protones nel núcleu (númberu atómicu), determina'l elementu químicu al que pertenez. Los núcleos atómicos non necesariamente tienen el mesmu númberu de neutrones, yá que átomos d'un mesmu elementu pueden tener mases distintes, ye dicir son isótopos del elementu.

La esistencia del núcleu atómicu foi deducida del esperimentu de Rutherford, onde se bombardeó una llámina fina d'oru con partícules alfa, que son núcleos atómicos de heliu emitíos por roques radiactives. La mayoría d'eses partícules trespasaben la llámina, pero delles rebotaban, lo cual demostró la esistencia d'un minúsculu núcleu atómicu.

Historia[editar | editar la fonte]

El descubrimientu de los electrones foi la primer indicación de la estructura interna de los átomos. A empiezos del sieglu XX el modelu aceptáu del átomu yera'l de JJ Thomson "pudín de pases" modelu nel cual l'átomu yera una gran bola de carga positiva colos pequenos electrones cargaos negativamente enllastráu dientro de la mesma. Entós daquella, los físicos afayaren tamién tres tipos de radiaciones procedentes de los átomos: alfa, beta y radiación gamma. Los esperimentos de 1911 realizaos por Lise Meitner y Otto Hahn, y por James Chadwick en 1914 amosaron que l'espectru de decaimiento beta ye continuu y non discretu. Esto ye, los electrones son espulsaos del átomu con una gama d'enerxíes, en cuenta de les cantidaes discretes d'enerxía que se repara en rayo gamma y decaimiento alfa. Esto paecía indicar que la enerxía nun se caltenía nestes escayencia. Darréu afayóse que la enerxía sí se caltien, col descubrimientu de los neutríns.

En 1906 Ernest Rutherford publicó "El retrasu de la partícula alfa del radiu cuando traviesa la materia", en Philosophical Magacín (12, p. 134-46). Hans Geiger amplió esti trabayu nuna comunicación a la Royal Society (Proc. Roy. Soc. 17 de xunetu de 1908) con esperimentos y Rutherford fixérase pasar aire al traviés de les partícules α, papel d'aluminiu y papel d'aluminiu dorao. Geiger y Marsden publicaron trabayos adicionales en 1909 (Proc. Roy. Soc. A82 p. 495-500) y ampliaron entá más el trabayu na publicación de 1910 por Geiger (Proc. Roy. Soc. 1 de febreru de 1910). En 1911-2 Rutherford esplicó ante la Royal Society los esperimentos y propunxo la nueva teoría del núcleu atómicu. Polo que se considera que Rutherford demostró en 1911 la esistencia del núcleu atómicu.[1]

Por eses mesmes feches (1909) Ernest Rutherford realizó un esperimentu nel que Hans Geiger y Ernest Marsden, so la so supervisión dispararon partícules alfa (núcleos d'heliu) nuna delgada llámina d'oru. El modelu atómicu de Thomson predicía que la de les partícules alfa teníen de salir de la llámina con pequenes esviaciones de les sos trayectories. Sicasí, afayó que delles partícules esvalixar a grandes ángulos, ya inclusive dafechu escontra tras en dellos casos. Esti descubrimientu en 1911, llevó al modelu atómicu de Rutherford, en que l'átomu ta constituyíu por protones y electrones. Asina, l'átomu del nitróxenu-14 taría constituyíu por 14 protones y 7 electrones.[1]

El modelu de Rutherford funcionó abondo bien mientres munchos años. Pensábase que la repulsión de les cargues positives ente protones yera arreglada polos electrones (con carga negativa) interpuestos ordenadamente en mediu, polo que l'electrón yera consideráu como un "cementu nuclear".[1] Esto foi hasta que los estudios llevaos a cabu por Franco Rasetti, nel Institute of Technology de California en 1929. En 1925 sabíase que los protones y electrones tien un espín de 1 / 2, y nel modelu de Rutherford nitróxenu - 14 los 14 protones y seis de los electrones tendríen d'atayar les sos contribuciones al espín total, envalorándose un espín total de 1 / 2. Rasetti descubiertu, sicasí, qu'el nitróxenu - 14 tien un espín total unidá.[2]

En 1930 Wolfgang Pauli nun pudo asistir a una xunta en Tubinga, y nel so llugar unvió una carta famosu cola clásica introducción "Queríos Señores y señores radiactivos ". Na so carta Pauli suxurió que seique esistía una tercer partícula nel núcleu, que la bautizó col nome de "neutrones". Suxurió que yera más llixeru qu'un electrón y ensin carga eléctrica, y que nun interactuaba fácilmente cola materia (y por eso inda nun se-y detectara). Esta hipótesis dexaba resolver tantu'l problema del caltenimientu de la enerxía na desintegración beta y el espín de nitróxenu - 14, la primera porque los neutrones llevaben la enerxía ensin detectar y el segundu porque un electrón extra acoplar col electrón sobrante nel núcleu de nitróxenu - 14 p'apurrir un espín de 1. Enrico Fermi redenominó en 1931 los neutrones de Pauli como neutrinos (n'italianu pequeñu neutral) y unos trenta años dempués demostróse finalmente qu'un neutrinos realmente emítense na escayencia beta.

En 1932 James Chadwick diose cuenta de que la radiación que de que fuera reparáu por Walther Bothe, Herbert L. Becker, Irène y Jean Frédéric Joliot-Curie yera en realidá por cuenta de una partícula qu'él llamó'l neutrón. Nel mesmu añu Dimitri Ivanenko suxurió que los neutrones yeren, de fechu partícules de espín 1 / 2, qu'esistíen nel núcleu y que nun esisten electrones nel mesmu, y Francis Perrin suxurió que los neutrinos son partícules nucleares, que se crean mientres la escayencia beta. Fermi publicó 1934 una teoría de los neutrinos con una sólida base teórica. Nel mesmu añu Hideki Yukawa propunxo la primer teoría importante de la fuerza pa esplicar la forma en que'l núcleu caltién xuntu.

Depués del descubrimientu del neutrón, por James Chadwick, Werner Heisenberg (qu'enunció años antes el principiu d'incertidume), indicó que los neutrones pueden ser parte del núcleu, y non asina los electrones. Con esta teoría resolvíase totalmente el problema del spin que nun coincidía, amás d'esplicar tolos aspeutos del comportamientu nuclear.[2]

Sicasí, la nueva teoría traía consigo otru severu problema: col modelu anterior, qu'incluyía electrones como "cementu nuclear", esplicábase que los protones, toos cola mesma carga positiva, permanecieren totalmente xuntos, ensin que salieren disparaos pola repulsión de cargues iguales. Sicasí, col modelu qu'inclúi'l neutrón, nun había esplicación dalguna al respective de la forma en qu'en núcleu se caltién xuníu y nun esplota de momentu (esto ye, nengún elementu tendría d'esistir, cola única esceición del hidróxenu). Pa ejemplificar, la fuerza cola que se repelen dos protones a la distancia que tán (una diezbillonésima de centímetru), ye d'aprosimao 240 newtons, fuerza abondo p'alzar nel aire un oxetu de daqué más de 24 kilogramos (nótese la enormidad inimaxinable d'esa fuerza cuidao que tamos falando de dos protones, que la so masa ye de daqué más de 10-27 kilogramos)[3]

La enorme dificultá que sufría la teoría foise resolviendo gradualmente. En 1927, Heisenberg propunxo'l principiu d'incertidume, qu'indica que mientres mayor sía la precisión con que conozamos la velocidá d'una partícula, con menor precisión vamos poder conocer la so posición.[4]

En 1930 Einstein dedució a partir d'esti principiu, per medios matemáticos, que si'l principiu ye correctu, tamién ye correctu otru tipu d'indetermín sobre la midida de la enerxía esistente nun sistema zarráu. Mientres menor sía'l ralu de tiempu nel cual quier sabese la cantidá d'enerxía del sistema, con menor precisión podrá midir.[3]

Al momentu de suxurir el modelu de núcleu protón-neutrón, en 1932, Heisenberg suxurió tamién la esistencia d'un campu de fuerza que xunía los protones, per mediu de la esistencia efímera d'una partícula. La esistencia d'esta partícula sería posible solo pol principiu d'incertidume, na versión enunciada por Einstein.[5]

El físicu xaponés, Hideki Yukawa, entós púnxose a analizar les propiedaes de la partícula propuesta por Heisenberg, y en 1935 describió eses propiedaes con precisión. La partícula solo podría esistir un intre d'unos Plantía:Notación científica segundos, tiempu abondu por que pueda dir d'un protón a otru, pero non más allá del núcleu del átomu. La enerxía necesaria pa la esistencia d'esta partícula nesi curtiu periodu afaise de primeres d'incertidume na versión de Einstein.[5] Utilizando eses ecuaciones, la enerxía disponible nesi periodu sería de 20 pJ (picu xunetos, Plantía:Notación científica o Plantía:Notación científica), lo qu'equival a una partícula con una masa de 250 vegaes la del electrón.

Dende entós hubo dellos intentos de detectar esa partícula esperimentalmente. De xacíu que siendo una partícula que solo esiste un curtiu intre, y utilizando enerxía non disponible, solo gracies de primeres d'incertidume, sería imposible de detectar, sacante si esa enerxía fora proporcionada. Los rayos cósmicos —partícules que lleguen del espaciu a enormes velocidaes— pueden apurrir esa enerxía. En 1948, esperimentando con rayos cósmicos en Bolivia, la partícula foi detectada por Cecil Frank Powell. La partícula foi llamada Pion.[6]

Descripción del núcleu[editar | editar la fonte]

Forma y tamañu del núcleu[editar | editar la fonte]

Los núcleos atómicos son muncho más pequenos que'l tamañu típicu d'un átomu (ente 10 000 y 100 000 vegaes más pequenos). Amás contienen más del 99 % de la masa colo cual la densidá másica del núcleu ye bien elevada. Los núcleos atómicos tienen dalgún tipu d'estructura interna, por casu los neutrones y protones paecen tar orbitando unos alredor de los otros, fechu que se manifiesta na esistencia del momentu magnéticu nuclear. Sicasí, los esperimentos revelen que'l núcleu paezse enforma a una esfera o elipsoide compactu de 10-15 m (= 1 fm), nel que la densidá paez práuticamente constante. Naturalmente'l radiu varia según el númberu de protones y neutrones, siendo los núcleos más pesaos y con más partícules daqué más grandes. La siguiente fórmula da'l radiu del núcleu en función del númberu de nucleones A:


Onde

Densidá de carga eléctrica nel núcleu atómicu.

La densidá de carga eléctrica del núcleu ye aprosimao constante hasta la distancia y depués aparra rápido hasta práuticamente 0 nuna distancia acordies con la fórmula:


Onde r ye la distancia radial al centru del núcleu atómicu.

Los aproximamientos anteriores son meyores pa núcleos esféricos, anque la mayoría de núcleos nun paecen ser esféricos como revela que tengan momentu cuadrupolar distintu de cero. Esti momentu cuadrupolar manifestar na estructura hiperfina de los espectro atómicos y fai que'l campu eléctrico del núcleu nun sía un campu coulombiano con simetría esférica.

Estabilidá del núcleu[editar | editar la fonte]

Diagrama de Segrè, en colloráu los núcleos estables, n'otru colores los núcleos inestables coloriaos según el períodu de desintegración. Reparar qu'un llixeru escesu de neutrones favorez la estabilidá n'átomos pesaos.

Los núcleos atómicos pórtense como partícules compuestes a enerxíes abondo baxes. Amás, la mayoría de núcleos atómicos per debaxo d'un ciertu pesu atómicu y qu'amás presenten un equilibriu ente'l númberu de neutrones y el númberu de protones (númberu atómicu) son estables. Sicasí, sabemos que los neutrones aisllaos y los núcleos con demasiaos neutrones (o demasiaos protones) son inestables o radiactivos.

La esplicación d'esta estabilidá de los núcleos mora na esistencia de los piones. Aislladamente los neutrones pueden sufrir vía interacción débil la siguiente desintegración:

(1)

Sicasí, dientro del núcleu atómicu la cercanía ente neutrones y protones fai que sían muncho más rápides, vía interacción fuerte les reacciones:

(2)

Esto fai que de cutio los neutrones del núcleu tresformar en protones, y dellos protones en neutrones, esto fai que la reacción (1) apenes tenga tiempu de soceder, lo qu'esplica que los neutrones de los núcleos atómicos sían muncho más estable que los neutrones aisllaos. Si'l númberu de protones y neutrones se desequilibra, ábrese la posibilidá de qu'en cada momentu haya más neutrones y sía más fácil l'escurrimientu de la reacción (1).

Modelos d'estructura del núcleu atómicu[editar | editar la fonte]

Artículu principal: estructura nuclear
Estructura interna del átomu.

En 1808 el químicu inglés John Dalton propón una nueva teoría sobre la constitución de la materia. Según Dalton tola materia ta formada por átomos indivisibles ya invisibles, estos de la mesma xúnense pa formar compuestos en proporciones enteres fixes y constantes. De fechu Dalton propunxo la esistencia de los átomos como una hipótesis pa esplicar porqué los átomos namái se combinaben en ciertes combinaciones concretes. L'estudiu d'eses combinaciones llevólu a poder calcular los pesos atómicos. Pa Dalton la esistencia del núcleu atómicu yera desconocida y considerábase que nun esistíen partes más pequenes.

En 1897 Joseph John Thomson foi'l primeru en proponer un modelu estructural internu del átomu. Thomson foi'l primeru n'identificar l'electrón como partícula subatómica de carga negativa y concluyó que «si los átomos contienen partícules negatives y la materia presentar con neutralidá de carga, entós tienen d'esistir partícules positives». Ye según Thomson postuló que l'átomu tien de ser una esfera compacta positiva na cual atoparíense encuallaos los electrones en distintos llugares, de manera que la cantidá de carga negativa sía igual a la carga positiva.

Asina nin el modelu atómicu de Dalton nin el de Thomson incluyíen nenguna descripción del núcleu atómicu. La noción de núcleu atómicu surdió en 1911 cuando Ernest Rutherford y los sos collaboradores Hans Geiger y Ernest Marsden, utilizando un fexe de radiación alfa, bombardearon fueyes laminadas metáliques bien delgaes, asitiando una pantalla de sulfuru de cinc al so alredor, sustanza que tenía la cualidá de producir rellumos col choque de les partícules alfa incidentes. La fueya metálica foi travesada pola mayoría de les partícules alfa incidentes; dalgunes d'elles siguieron en llinia recta, otres fueron esviaes del so camín, y lo más sorprendente, bien poques rebotaron contra la llámina.

A la lluz de la fórmula dispersión usada por Rutherford:

(1)

Onde:

, siendo la constante dieléctrica del vacíu y , ye la carga eléctrica del centru dispersor.
, ye la enerxía cinética inicial de la partícula alfa incidente.
ye'l parámetru d'impactu.

Les resultancies del esperimentu riquíen parámetros d'impactu bien pequenos, y por tantu que'l núcleu tuviera concentráu na parte central, el núcleu de carga positiva, onde taría concentrada la masa del átomu. con ello esplicaba la esviación de les partícules alfa (partícules de carga positiva). Los electrones atopar nuna estructura esterna xirando n'órbites circulares bien alloñaes del núcleu, lo qu'esplicaría'l pasu mayoritariu de les partícules alfa al traviés de la llámina d'oru.

En 1913 Niels Bohr postula que los electrones xiren a grandes velocidaes alredor del núcleu atómicu. Los electrones disponer en diverses órbites circulares, que determinen distintos niveles d'enerxía. L'electrón puede aportar a un nivel d'enerxía cimera, pa lo cual precisa "absorber" enerxía. Pa volver al so nivel d'enerxía orixinal ye necesariu que l'electrón emita la enerxía absorbida (por casu en forma de radiación).

Comúnmente esisten dos modelos distintos describir el núcleu atómicu:

  • El modelu de la gota d'agua *

El modelu de capes Anque dichos modelos son mutuamente escluyentes nes sos hipótesis básiques tal como fueron formulaos originalmente, A. Bohr y Mottelson construyeron un modelu mistu que combinaba fenomenológicamente característiques de dambos modelos.

Modelu de la gota líquida[editar | editar la fonte]

Enerxía d'enllaz por nucleón (=B/A) pa los isótopos conocíos.

Esti modelu nun pretende describir la complexa estructura interna del núcleu sinón solo les enerxíes d'enllaz ente neutrones y protones según dellos aspeutos de los estaos escitaos d'un núcleu atómicu que se reflexen nos espectros nucleares. Foi primeramente propuestu por Bohr (1935) y el núcleu n'analoxía con una masa de fluyíu clásicu compuestu por neutrones y protones y una fuerza central coulombiana repulsiva proporcional al númberu de protones Z y con orixe nel centru de la gota.

Dende'l puntu de vista cuantitativu reparar que la masa d'un núcleu atómicu ye inferior a la masa de los componentes individuales (protones y neutrones) que lo formen. Esta non caltenimientu de la masa ta conectada cola ecuación de Einstein, pola cual parte de la masa ta en forma d'enerxía de trezu ente dichos componentes. Cuantitativamente tiense la siguiente ecuación:[7]


Onde:

son respectivamente la masa del núcleu, la masa d'un protón y la masa d'un neutrón.
son respectivamente el númberu atómicu (que coincide col númberu de protones), el númberu másico (que coincide col númberu de nucleones) y A-Z por tantu coincide col númberu de neturones.
ye la enerxía d'enllaz ente tolos nucleones.

El modelu de la gota d'agua pretende describir la enerxía d'enllaz B a partir de considerancies xeométriques ya interpreta la enerxía de los estaos escitaos de los núcleos como rotaciones o vibraciones semiclásicas de la "gota d'agua" que representa'l núcleu. En concretu nesti modelu la enerxía d'enllaz represéntase como B:[8]


Onde:

esti términu representa l'efectu favorable del volume.
esti términu representa l'efectu desfavorable de la superficie.
representa l'efectu de la repulsión coulombiana ente protones.
representa'l fechu de que los núcleos "equilibraos" con un númberu similar de protones y neutrones son más estables.
representa'l fechu de que los núcleos con un númberu par de protones y neutrones, son más estables que los que tienen un númberu impar de dambes especies. Matemáticamente el términu vien dáu por:

Modelu de capes[editar | editar la fonte]

Esti ye un modelu que trata de prindar parte de la estructura interna reflexada tantu nel momentu angular del núcleu, como nel so momentu angular. Amás el modelu pretende esplicar porqué los núcleos con un "númberu máxicu" de nucleones (neutrones y protones) resulten más estables (los númberos máxicos son 2, 8, 20, 28, 50, 82 y 126).

La esplicación del modelu ye que los nucleones arrexuntar en "capes". Cada capa ta formada por un conxuntu d'estaos cuánticos con enerxíes similares, la diferencia d'enerxía ente dos capa ye grande comparada coles variaciones d'enerxía dientro de cada capa. Asina cuidao que los nucleones son fermiones un núcleu atómicu va tener les capes de menor enerxía llena polo que los nucleones nun pueden cayer a capes inferiores yá llenes. Les capes equí tienen d'entendese nun sentíu astractu y non como capes físiques como les capes d'una cebolla, de fechu la forma xeométrica del espaciu ocupáu por un nucleón nun determináu estáu d'una capa se interpenetra col espaciu ocupáu por nucleones d'otres capes, de manera análoga a como les capes electróniques se interpenetran nun átomu.

Ver tamién[editar | editar la fonte]

Referencies[editar | editar la fonte]

  1. 1,0 1,1 1,2 Asimov 1972, Aprosimao nel sitiu 9,26 % del ensayu (66,6 % del llibru)
  2. 2,0 2,1 Asimov 1972, Aprosimao nel sitiu 22,2 % del ensayu (67,3 % del llibru)
  3. 3,0 3,1 Asimov 1972, Aprosimao nel sitiu 32,9 % del ensayu (67,9 % del llibru)
  4. Asimov 1972-b, Aprosimao nel sitiu 38,9 % del ensayu (62,8 % del llibru)
  5. 5,0 5,1 Asimov 1972, Aprosimao nel sitiu 72,8 % del ensayu (70 % del llibru)
  6. Asimov 1972, Aprosimao nel sitiu 93,2 % del ensayu (71,1 % del llibru)
  7. C. Sánchez del Ríu, 2003, p. 893
  8. C. Sánchez del Ríu, 2003, p. 894

Bibliografía[editar | editar la fonte]

  •  
  •  
  • (2003) en C. Sánchez del Ríu editorial = Ediciones Pirámide: Física cuántica, 882-899. ISBN 978-84-368-1656-3.




Núcleo atómico