Identidá de Euler

De Wikipedia
Saltar a navegación Saltar a la gueta

Llámase identidá de Euler a un casu especial de la fórmula desenvuelta por Leonhard Euler, notable por rellacionar cinco números bien utilizaos na hestoria de les matemátiques y que pertenecen a distintes cañes de la mesma:

onde:

  • π (número pi) ye un númberu irracional y trascendente que rellaciona'l llargor de la circunferencia col so diámetru y ta presente en delles de les ecuaciones más fundamentales de la física.
  • e (númberu de Euler) ye la suma de la serie , qu'apaez en numberosos procesos naturales y en distintos problemes físicos y matemáticos y ye tamién un númberu irracional y trascendente.
  • i (unidá imaxinaria) ye la raigañu cuadráu de -1, a partir del cuál constrúi'l conxuntu de los númberos complexos.
  • 0 y 1 son los elementos neutros respectivamente de la adición y la multiplicación

Esplicación[editar | editar la fonte]

Fórmula de Euler pa un ángulu xeneral.

La identidá ye un casu especial de la Fórmula de Euler, que especifica que

pa cualesquier númberu real x. (Nótese que los argumentos pa les funciones trigonométriques sen y cos tomar en radianes.) En particular si

entós

y yá que

y que

síguese que

Lo cual implica la identidá


Pa una forma alternativa de notar que la identidá de Euler ye tantu verdadera como fonda, supongamos que:

nel desenvolvimientu polinómico de y a la potencia x:

pa llograr:

simplificando (usando i2 = -1):

Al dixebrar el segundu miembru de la ecuación en subseries real ya imaxinaries:

Puede comprobase la converxencia d'estos dos subseries infinites, lo cual implica

Llogaritmos de númberos negativos[editar | editar la fonte]

El llogaritmu natural d'un númberu complexu z = a+bi (onde a y b son númberos reales) defínese como:

Onde ye:

Notar que con esta definición, arg(z) ta nel intervalu (l'argumentu nesti intervalu ye conocíu como'l "valor principal del argumentu" o a cencielles "argumentu principal"). Esta definición nun ye la única posible, yá que pudo habese definíu en [0, 2π), etc.

Pa llogaritmos d'otres bases, tiense la siguiente relación por aciu "cambéu de base" :

Por casu :

.

Y tamién se cumple:

.

Lo anterior puede deducise de la definición. Tamién puede llograse a partir de la identidá de Euler, pero nun ye la razón de la deducción de ln(-1). Esti detalle va esplicase de siguío.


Sábese que , pero tamién ye ciertu que o . De fechu polo xeneral:

L'erru que puede cometese equí, ye que si , entós a = b. Lo anterior ye válidu si a y b son númberos reales, pero en complexos esto non se siempres se cumple. Per ende magar , nun ye ciertu que . D'esta forma, puede vese que:

.

Antes mentóse que si se puede llograr cola identidá de Euler, pero nun ye recomendable faelo, porque puede cometese erros como lu describir más arriba, yá que non siempres se cumple'l fechu de que si entós a = ln(b).


Otru erru ye lo siguiente:

.

L'erru equí asocede en . Esto postreru nun ye correctu y el motivu ye que

.

Porque solo cumplir de manera xeneral si a ye positivu. Per un sitiu , pero nun ye real, cuidao que ln(-y) nun ye un númberu real.

Identidá Aumentada[editar | editar la fonte]

El númberu áureo (tamién llamáu númberu d'oru​) ye un númberu irracional,​ representáu por la lletra griega φ (phi) o Φ (Phi) = 1,61803398874988....

Una de les sos propiedaes ye:

Por tantu:

Reemplazando '1' na identidá de Euler, , tiense:

Por tantu:

Ordenando los términos de la ecuación queda:

D'esta manera rellacionen siete númberos bien utilizaos, cinco operaciones de les matemátiques y l'ecuación cuadrática.

Ver tamién[editar | editar la fonte]

Referencies[editar | editar la fonte]

  • Weisstein, Eric W.. «Euler Formula» (inglés). MathWorld--A Wolfram Web Resource. Consultáu'l 15 de mayu de 2009.





Identidad de Euler